.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/miscellaneous/plot_display_object_visualization.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end <sphx_glr_download_auto_examples_miscellaneous_plot_display_object_visualization.py>` to download the full example code. or to run this example in your browser via JupyterLite or Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_miscellaneous_plot_display_object_visualization.py: =================================== Visualizations with Display Objects =================================== .. currentmodule:: sklearn.metrics In this example, we will construct display objects, :class:`ConfusionMatrixDisplay`, :class:`RocCurveDisplay`, and :class:`PrecisionRecallDisplay` directly from their respective metrics. This is an alternative to using their corresponding plot functions when a model's predictions are already computed or expensive to compute. Note that this is advanced usage, and in general we recommend using their respective plot functions. .. GENERATED FROM PYTHON SOURCE LINES 17-21 .. code-block:: Python # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause .. GENERATED FROM PYTHON SOURCE LINES 22-29 Load Data and train model ------------------------- For this example, we load a blood transfusion service center data set from `OpenML <https://www.openml.org/d/1464>`_. This is a binary classification problem where the target is whether an individual donated blood. Then the data is split into a train and test dataset and a logistic regression is fitted with the train dataset. .. GENERATED FROM PYTHON SOURCE LINES 29-41 .. code-block:: Python from sklearn.datasets import fetch_openml from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler X, y = fetch_openml(data_id=1464, return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y) clf = make_pipeline(StandardScaler(), LogisticRegression(random_state=0)) clf.fit(X_train, y_train) .. raw:: html <div class="output_subarea output_html rendered_html output_result"> <style>#sk-container-id-54 { /* Definition of color scheme common for light and dark mode */ --sklearn-color-text: #000; --sklearn-color-text-muted: #666; --sklearn-color-line: gray; /* Definition of color scheme for unfitted estimators */ --sklearn-color-unfitted-level-0: #fff5e6; --sklearn-color-unfitted-level-1: #f6e4d2; --sklearn-color-unfitted-level-2: #ffe0b3; --sklearn-color-unfitted-level-3: chocolate; /* Definition of color scheme for fitted estimators */ --sklearn-color-fitted-level-0: #f0f8ff; --sklearn-color-fitted-level-1: #d4ebff; --sklearn-color-fitted-level-2: #b3dbfd; --sklearn-color-fitted-level-3: cornflowerblue; /* Specific color for light theme */ --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black))); --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white))); --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black))); --sklearn-color-icon: #696969; @media (prefers-color-scheme: dark) { /* Redefinition of color scheme for dark theme */ --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white))); --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111))); --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white))); --sklearn-color-icon: #878787; } } #sk-container-id-54 { color: var(--sklearn-color-text); } #sk-container-id-54 pre { padding: 0; } #sk-container-id-54 input.sk-hidden--visually { border: 0; clip: rect(1px 1px 1px 1px); clip: rect(1px, 1px, 1px, 1px); height: 1px; margin: -1px; overflow: hidden; padding: 0; position: absolute; width: 1px; } #sk-container-id-54 div.sk-dashed-wrapped { border: 1px dashed var(--sklearn-color-line); margin: 0 0.4em 0.5em 0.4em; box-sizing: border-box; padding-bottom: 0.4em; background-color: var(--sklearn-color-background); } #sk-container-id-54 div.sk-container { /* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */ display: inline-block !important; position: relative; } #sk-container-id-54 div.sk-text-repr-fallback { display: none; } div.sk-parallel-item, div.sk-serial, div.sk-item { /* draw centered vertical line to link estimators */ background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background)); background-size: 2px 100%; background-repeat: no-repeat; background-position: center center; } /* Parallel-specific style estimator block */ #sk-container-id-54 div.sk-parallel-item::after { content: ""; width: 100%; border-bottom: 2px solid var(--sklearn-color-text-on-default-background); flex-grow: 1; } #sk-container-id-54 div.sk-parallel { display: flex; align-items: stretch; justify-content: center; background-color: var(--sklearn-color-background); position: relative; } #sk-container-id-54 div.sk-parallel-item { display: flex; flex-direction: column; } #sk-container-id-54 div.sk-parallel-item:first-child::after { align-self: flex-end; width: 50%; } #sk-container-id-54 div.sk-parallel-item:last-child::after { align-self: flex-start; width: 50%; } #sk-container-id-54 div.sk-parallel-item:only-child::after { width: 0; } /* Serial-specific style estimator block */ #sk-container-id-54 div.sk-serial { display: flex; flex-direction: column; align-items: center; background-color: var(--sklearn-color-background); padding-right: 1em; padding-left: 1em; } /* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is clickable and can be expanded/collapsed. - Pipeline and ColumnTransformer use this feature and define the default style - Estimators will overwrite some part of the style using the `sk-estimator` class */ /* Pipeline and ColumnTransformer style (default) */ #sk-container-id-54 div.sk-toggleable { /* Default theme specific background. It is overwritten whether we have a specific estimator or a Pipeline/ColumnTransformer */ background-color: var(--sklearn-color-background); } /* Toggleable label */ #sk-container-id-54 label.sk-toggleable__label { cursor: pointer; display: flex; width: 100%; margin-bottom: 0; padding: 0.5em; box-sizing: border-box; text-align: center; align-items: start; justify-content: space-between; gap: 0.5em; } #sk-container-id-54 label.sk-toggleable__label .caption { font-size: 0.6rem; font-weight: lighter; color: var(--sklearn-color-text-muted); } #sk-container-id-54 label.sk-toggleable__label-arrow:before { /* Arrow on the left of the label */ content: "▸"; float: left; margin-right: 0.25em; color: var(--sklearn-color-icon); } #sk-container-id-54 label.sk-toggleable__label-arrow:hover:before { color: var(--sklearn-color-text); } /* Toggleable content - dropdown */ #sk-container-id-54 div.sk-toggleable__content { max-height: 0; max-width: 0; overflow: hidden; text-align: left; /* unfitted */ background-color: var(--sklearn-color-unfitted-level-0); } #sk-container-id-54 div.sk-toggleable__content.fitted { /* fitted */ background-color: var(--sklearn-color-fitted-level-0); } #sk-container-id-54 div.sk-toggleable__content pre { margin: 0.2em; border-radius: 0.25em; color: var(--sklearn-color-text); /* unfitted */ background-color: var(--sklearn-color-unfitted-level-0); } #sk-container-id-54 div.sk-toggleable__content.fitted pre { /* unfitted */ background-color: var(--sklearn-color-fitted-level-0); } #sk-container-id-54 input.sk-toggleable__control:checked~div.sk-toggleable__content { /* Expand drop-down */ max-height: 200px; max-width: 100%; overflow: auto; } #sk-container-id-54 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before { content: "▾"; } /* Pipeline/ColumnTransformer-specific style */ #sk-container-id-54 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label { color: var(--sklearn-color-text); background-color: var(--sklearn-color-unfitted-level-2); } #sk-container-id-54 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label { background-color: var(--sklearn-color-fitted-level-2); } /* Estimator-specific style */ /* Colorize estimator box */ #sk-container-id-54 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label { /* unfitted */ background-color: var(--sklearn-color-unfitted-level-2); } #sk-container-id-54 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label { /* fitted */ background-color: var(--sklearn-color-fitted-level-2); } #sk-container-id-54 div.sk-label label.sk-toggleable__label, #sk-container-id-54 div.sk-label label { /* The background is the default theme color */ color: var(--sklearn-color-text-on-default-background); } /* On hover, darken the color of the background */ #sk-container-id-54 div.sk-label:hover label.sk-toggleable__label { color: var(--sklearn-color-text); background-color: var(--sklearn-color-unfitted-level-2); } /* Label box, darken color on hover, fitted */ #sk-container-id-54 div.sk-label.fitted:hover label.sk-toggleable__label.fitted { color: var(--sklearn-color-text); background-color: var(--sklearn-color-fitted-level-2); } /* Estimator label */ #sk-container-id-54 div.sk-label label { font-family: monospace; font-weight: bold; display: inline-block; line-height: 1.2em; } #sk-container-id-54 div.sk-label-container { text-align: center; } /* Estimator-specific */ #sk-container-id-54 div.sk-estimator { font-family: monospace; border: 1px dotted var(--sklearn-color-border-box); border-radius: 0.25em; box-sizing: border-box; margin-bottom: 0.5em; /* unfitted */ background-color: var(--sklearn-color-unfitted-level-0); } #sk-container-id-54 div.sk-estimator.fitted { /* fitted */ background-color: var(--sklearn-color-fitted-level-0); } /* on hover */ #sk-container-id-54 div.sk-estimator:hover { /* unfitted */ background-color: var(--sklearn-color-unfitted-level-2); } #sk-container-id-54 div.sk-estimator.fitted:hover { /* fitted */ background-color: var(--sklearn-color-fitted-level-2); } /* Specification for estimator info (e.g. "i" and "?") */ /* Common style for "i" and "?" */ .sk-estimator-doc-link, a:link.sk-estimator-doc-link, a:visited.sk-estimator-doc-link { float: right; font-size: smaller; line-height: 1em; font-family: monospace; background-color: var(--sklearn-color-background); border-radius: 1em; height: 1em; width: 1em; text-decoration: none !important; margin-left: 0.5em; text-align: center; /* unfitted */ border: var(--sklearn-color-unfitted-level-1) 1pt solid; color: var(--sklearn-color-unfitted-level-1); } .sk-estimator-doc-link.fitted, a:link.sk-estimator-doc-link.fitted, a:visited.sk-estimator-doc-link.fitted { /* fitted */ border: var(--sklearn-color-fitted-level-1) 1pt solid; color: var(--sklearn-color-fitted-level-1); } /* On hover */ div.sk-estimator:hover .sk-estimator-doc-link:hover, .sk-estimator-doc-link:hover, div.sk-label-container:hover .sk-estimator-doc-link:hover, .sk-estimator-doc-link:hover { /* unfitted */ background-color: var(--sklearn-color-unfitted-level-3); color: var(--sklearn-color-background); text-decoration: none; } div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover, .sk-estimator-doc-link.fitted:hover, div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover, .sk-estimator-doc-link.fitted:hover { /* fitted */ background-color: var(--sklearn-color-fitted-level-3); color: var(--sklearn-color-background); text-decoration: none; } /* Span, style for the box shown on hovering the info icon */ .sk-estimator-doc-link span { display: none; z-index: 9999; position: relative; font-weight: normal; right: .2ex; padding: .5ex; margin: .5ex; width: min-content; min-width: 20ex; max-width: 50ex; color: var(--sklearn-color-text); box-shadow: 2pt 2pt 4pt #999; /* unfitted */ background: var(--sklearn-color-unfitted-level-0); border: .5pt solid var(--sklearn-color-unfitted-level-3); } .sk-estimator-doc-link.fitted span { /* fitted */ background: var(--sklearn-color-fitted-level-0); border: var(--sklearn-color-fitted-level-3); } .sk-estimator-doc-link:hover span { display: block; } /* "?"-specific style due to the `<a>` HTML tag */ #sk-container-id-54 a.estimator_doc_link { float: right; font-size: 1rem; line-height: 1em; font-family: monospace; background-color: var(--sklearn-color-background); border-radius: 1rem; height: 1rem; width: 1rem; text-decoration: none; /* unfitted */ color: var(--sklearn-color-unfitted-level-1); border: var(--sklearn-color-unfitted-level-1) 1pt solid; } #sk-container-id-54 a.estimator_doc_link.fitted { /* fitted */ border: var(--sklearn-color-fitted-level-1) 1pt solid; color: var(--sklearn-color-fitted-level-1); } /* On hover */ #sk-container-id-54 a.estimator_doc_link:hover { /* unfitted */ background-color: var(--sklearn-color-unfitted-level-3); color: var(--sklearn-color-background); text-decoration: none; } #sk-container-id-54 a.estimator_doc_link.fitted:hover { /* fitted */ background-color: var(--sklearn-color-fitted-level-3); } </style><div id="sk-container-id-54" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('standardscaler', StandardScaler()), ('logisticregression', LogisticRegression(random_state=0))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-223" type="checkbox" ><label for="sk-estimator-id-223" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>Pipeline</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.pipeline.Pipeline.html">?<span>Documentation for Pipeline</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></div></label><div class="sk-toggleable__content fitted"><pre>Pipeline(steps=[('standardscaler', StandardScaler()), ('logisticregression', LogisticRegression(random_state=0))])</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-224" type="checkbox" ><label for="sk-estimator-id-224" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>StandardScaler</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.preprocessing.StandardScaler.html">?<span>Documentation for StandardScaler</span></a></div></label><div class="sk-toggleable__content fitted"><pre>StandardScaler()</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-225" type="checkbox" ><label for="sk-estimator-id-225" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>LogisticRegression</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.linear_model.LogisticRegression.html">?<span>Documentation for LogisticRegression</span></a></div></label><div class="sk-toggleable__content fitted"><pre>LogisticRegression(random_state=0)</pre></div> </div></div></div></div></div></div> </div> <br /> <br /> .. GENERATED FROM PYTHON SOURCE LINES 42-47 Create :class:`ConfusionMatrixDisplay` ###################################### With the fitted model, we compute the predictions of the model on the test dataset. These predictions are used to compute the confusion matrix which is plotted with the :class:`ConfusionMatrixDisplay` .. GENERATED FROM PYTHON SOURCE LINES 47-55 .. code-block:: Python from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix y_pred = clf.predict(X_test) cm = confusion_matrix(y_test, y_pred) cm_display = ConfusionMatrixDisplay(cm).plot() .. image-sg:: /auto_examples/miscellaneous/images/sphx_glr_plot_display_object_visualization_001.png :alt: plot display object visualization :srcset: /auto_examples/miscellaneous/images/sphx_glr_plot_display_object_visualization_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 56-61 Create :class:`RocCurveDisplay` ############################### The roc curve requires either the probabilities or the non-thresholded decision values from the estimator. Since the logistic regression provides a decision function, we will use it to plot the roc curve: .. GENERATED FROM PYTHON SOURCE LINES 61-68 .. code-block:: Python from sklearn.metrics import RocCurveDisplay, roc_curve y_score = clf.decision_function(X_test) fpr, tpr, _ = roc_curve(y_test, y_score, pos_label=clf.classes_[1]) roc_display = RocCurveDisplay(fpr=fpr, tpr=tpr).plot() .. image-sg:: /auto_examples/miscellaneous/images/sphx_glr_plot_display_object_visualization_002.png :alt: plot display object visualization :srcset: /auto_examples/miscellaneous/images/sphx_glr_plot_display_object_visualization_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none /home/circleci/project/sklearn/metrics/_plot/roc_curve.py:189: UserWarning: No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. .. GENERATED FROM PYTHON SOURCE LINES 69-73 Create :class:`PrecisionRecallDisplay` ###################################### Similarly, the precision recall curve can be plotted using `y_score` from the prevision sections. .. GENERATED FROM PYTHON SOURCE LINES 73-78 .. code-block:: Python from sklearn.metrics import PrecisionRecallDisplay, precision_recall_curve prec, recall, _ = precision_recall_curve(y_test, y_score, pos_label=clf.classes_[1]) pr_display = PrecisionRecallDisplay(precision=prec, recall=recall).plot() .. image-sg:: /auto_examples/miscellaneous/images/sphx_glr_plot_display_object_visualization_003.png :alt: plot display object visualization :srcset: /auto_examples/miscellaneous/images/sphx_glr_plot_display_object_visualization_003.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 79-85 Combining the display objects into a single plot ################################################ The display objects store the computed values that were passed as arguments. This allows for the visualizations to be easliy combined using matplotlib's API. In the following example, we place the displays next to each other in a row. .. GENERATED FROM PYTHON SOURCE LINES 85-93 .. code-block:: Python import matplotlib.pyplot as plt fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 8)) roc_display.plot(ax=ax1) pr_display.plot(ax=ax2) plt.show() .. image-sg:: /auto_examples/miscellaneous/images/sphx_glr_plot_display_object_visualization_004.png :alt: plot display object visualization :srcset: /auto_examples/miscellaneous/images/sphx_glr_plot_display_object_visualization_004.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none /home/circleci/project/sklearn/metrics/_plot/roc_curve.py:189: UserWarning: No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 1.760 seconds) .. _sphx_glr_download_auto_examples_miscellaneous_plot_display_object_visualization.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/1.6.X?urlpath=lab/tree/notebooks/auto_examples/miscellaneous/plot_display_object_visualization.ipynb :alt: Launch binder :width: 150 px .. container:: lite-badge .. image:: images/jupyterlite_badge_logo.svg :target: ../../lite/lab/index.html?path=auto_examples/miscellaneous/plot_display_object_visualization.ipynb :alt: Launch JupyterLite :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_display_object_visualization.ipynb <plot_display_object_visualization.ipynb>` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_display_object_visualization.py <plot_display_object_visualization.py>` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_display_object_visualization.zip <plot_display_object_visualization.zip>` .. include:: plot_display_object_visualization.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_